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We show the existence and asymptotic stability of two fixed points of the 
renormalization group transformation for the hierarchical two-dimensional 
Coulomb gas in the sine-Gordon representation and temperatures slightly 
greater than the critical one. We prove also that the correlations at the fixed 
points decay as in the hierarchical massive scalar free theory, that is, as d2y 4. We 
argue that this is the natural definition of screening in the hierarchical 
approximation. 
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1. I N T R O D U C T I O N  

In the last 10 years the renormalization group ideas have been extensively 
applied to the two-dimensional Coulomb gas of identical charges _+_e, in 
order to rigorously understand to so-called Kosterlitz-Thouless phase 
transition.(1) 

For inverse temperatures /? larger than the critical one ~c and small 
activity 2, it has been proved that there is no screening. (z3) This result is 
strictly related to the fact that, in the field-theoretic representation of the 
model (the so-called sine-Gordon representation), the effective potential 
goes to zero as the scale goes to infinity. (4~ All these results are valid also 
in the hierarchical approximation of the model (see Section 2), where they 
are obtained much more easily. (5'6) 

For ~</~c screening is generally expected to be found, but this 
property has been proved in the exact model only for /~ very small. (7) 
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However, in the case of the hierarchical approximation, a weak form of 
screening has been proved for/~ </~,.(6~ 

In this paper we study the hierarchical Coulomb gas in the sine- 
Gordon representation in the region/3 <~/~c, by analyzing the renormaliza- 
tion group transformation T of the effective potential. We prove that T has 
two nontrivial asymptotic stable fixed points, which have the following 
screening property: the two-charge truncated correlations decay as d2y 4 
as the (hierarchical) distance dxy goes to infinity, which is the decaying 
behavior of the truncated correlations of the massive hierarchical scalar 
field. Our analysis also suggests that the effective potential for the 
hierarchical Coulomb gas on scale 1 is in the domain of attraction of one 
of the fixed points, if the activity is small enough, so that in this case as 
well screening should be observed. 

The existence of the nontrivial fixed points was proved in ref. 6 with a 
different technique, which does not use the sine-Gordon representation and 
extends to more general models. However, the analysis of ref. 6 allows one 
to study only the simple (not truncated) correlations. This is why it was 
restricted to the screening for fractional charges; in fact, for the fractional 
charges, the truncated correlations coincide with the simple ones. 

Finally, we want to stress that the technique used in this paper is 
essentially based on the bound discussed in the Appendix, which is a 
bound for the Ursell coefficients of a system of arbitrary charges sitting in 
the same point and interacting with a potential cQ~Q~. We were unable to 
find this estimate, which we think is interesting by itself, in the literature. 

2. THE H IERARCHICAL M O D E L  

Let Qj, j e  N, be a sequence of compatible pavements of ~2 made of 
squares of side size 7 J, where 7>/2 is an integer. To each A ~ Qj we 
associate a Gaussian variable z3 such that 

g ( z Z 3 ) = l l o g T ,  g (zaz~ , )=0  if Ar (2.1) 

Then we define, Vx E N2, 

q~x = ~ Z~xk' (2.2) 
k = 0  

where A(~ k) is the tessera of side size Vk containing x. 
Given x, y~  ~2, let hxy be the smallest integer such that exists a 
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A e Qh~, containing both x and y. We shall call dxy = yh,, the size of A, the 
hierarchical distance between x and y. By using (2.1), it is easy to see that 

1 
g((~0 x -  %)2) = g [ z~k , -  zany,] 2 = -  log dxy (2.3) 

which justifies the claim that % is a reasonable approximation of the two- 
dimensional zero-mass scalar field. In the following we shall denote the 
corresponding Gaussian measure by P(&o). 

If v(z), z e  ~1, is a real function such that 

v(O) = O, v(z) = v ( - z )  (2.4) 

and A is a finite volume belonging to QR, for some R > 0, we shall consider 
the measure 

1 
#A(dq~) = Z--~ P(&o) I ]  e'(e~) (2.5) 

d e Q o c ~ A  

Z~ = f P(dq~) ~ e "(~) (2.6) 
A c Qo c~ A 

where q)z is the constant value of the field on the tessera A. 
The choice 

v(q~) = ) . [ c o s ( . ~ 0 )  - 1 ]  (2.7) 

corresponds to the hierarchical Coulomb gas in the volume A with activity 
2/2, charges + e, and temperature/~-1, such that 

fie 2 = ~2 (2.8) 

For  more details on this point see ref. 5, where a rescaled field was used, 
instead of (2.2). 

Another interesting choice is 

V(q)) ----- --m2fp 2 ~- Um((~9 ) (2.9) 

which should give rise to the two-dimensional hierarchical scalar field of 
mass m. It is important to remark, however, that this is not a good 
approximation of the massive scalar field. In fact, it is easy to show that 

lim f A A ~ ~2 ~um(dqg) qgxq)Y oc d L  4 (2.10) 
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in disagreement with the exponential decay of the massive scalar field 
(a similar property is valid in other hierarchical models; see ref. 8, 
Chapter 4, Exercise 2). 

This observation will be very relevant in the following, since it implies 
that the hierarchical Coulomb gas should have power-decaying correla- 
tions also in a screened phase, but with a power equal to 4 independently 
of/?. 

Let us now define the renormalization group transformation. 
If F(z) is a function on R and {->~ denotes the expectation w.r.t, the 

measure (2.5), then 

<F((Po)>~ = l im <F(rpo) a >~ = <LT~-, ~ -.. L~F(~oo)>r~ (2.11) 
A ~  2 

where 

~ Po(dz) e v(~~ + z)7~2 
(Tv)(q~176 k I Po(dz) e~(Z) J (2.12) 

(LvF)(q9) = S Po(dz)  e ~(~ + z) F(~o + z)  

Po(dz)  e ~176 + ~) 
(2.13) 

if Po(dz) denotes the Gaussian measure o n  ~ 1  of mean zero and covariance 
(1/27z) log 7. 

The operators T and L v appear also in the expressions similar to 
(2.11) valid for the expectations of any observable depending on the values 
of the field cpx in a finite set of tesserae A ~ Qo. 

The operator (2.12) is the renormalization group transformation. It 
leaves invariant the space ~ of the continuous functions periodic of period 
T~ = 2rc/~ and satisfying (2.4); then, if we want to study the hierarchical 
Coulomb gas at temperature /~-1, we have to restrict T to ~ with 
0~= (fie2) 1/2. In ref. 5 it was implicitly shown that Vo(q~)=0 is, for c~2 > 87z, 
a fixed point of (2.12), which is attracting for functions of the form (2.7), 
for 2 small enough. In fact, one could also show that it is locally attracting 
in some subspace of sufficiently regular functions. 

In this paper we shall study the more difficult case ~2< 8re and we 
shall prove that there are two stable fixed points v~(~0)# 0 (this result, as 
discussed in the Introduction, has already been obtained with a different 
technique (6)) is a suitable subspace of ~ .  

Moreover, by studying the spectrum of (2.13) for v = v~ in the space of 
L 2 functions periodic of period T~, we shall prove that the integer charge 
truncated correlations decay like d~y 4. The restriction of Lv to periodic 
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functions is motivated by the fact that the truncated integer charge correla- 
tions are given by the formula 

pT(xl,  ~ ;...; x,,, a~) 

= &o 1 log exp 2j~1 c~jexp(ic~j~ofl ~=o (2.14) 

where {r~ { - 1, 1 } are the charges and x~ are the positions of n particles. 

3. T H E  E X I S T E N C E  OF T W O  A T T R A C T I N G  N O N T R I V I A L  
F IXED P O I N T S  

The proof of the existence of nontrivial fixed points for ~2<8r~ 
is based on the perturbative expansion of the renormalization group trans- 
formation (2.12). If v(q)) ~ E~, we can write 

v(q})= ~ vo_(e i~~ (3.1) 
O:~QeZ 

where vQ = v Q. Then, if v~ are the Fourier coefficients of (Tv)(q}), (2.12) 
can be written in the following form: 

oo  

1.)Q = (c~2/4rc)Q2~)Q .3i_ 2 1 

2n! Q I +  ' Qn=Q 

where 

vQ~ ""vQ Fn(Q~,...,Q,) (3.2) 

Fn(Q1 ..... Q,) = gT(ei~Qlz;...; ei~Q~ z) (3.3) 

if we denote g~" the truncated expectation with respect to the measure 
Po( dz ). 

In the Appendix we prove the following nontrivial bound, which will 
play a crucial role in the following: 

IFn(Q1,..., Q,)[ ~ <nn -1  (4x/-~ [Q,I) e-~QZm 
i 

(3.4) 

where ~c = (~2/8~) log 7 and Q = Y~7= ~ Qi. 
The linearization of (3.2) around the fixed point v = 0 has the property 

that the Fourier coefficients V_+l become unstable at c~2= 8~z. This implies, 
as is well known, a bifurcation of the trivial fixed point, which is 
responsible for the Kosterlitz-Thouless phase transition. In this paper we 
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study the range of temperatures immediately above the critical one, given 
by the relation 

~X 2 

0 < s--- 2 -  ~-~u-~< s o (3.5) 

with s o small enough. We start by proving that (3.2) has two fixed points 
different from zero. 

We first look for approximate solutions, by imposing in (3.2) the 
conditions IQI, [Qil~ < 2  and n~<2. Taking into account the symmetry 
property 19Q = 19_Q, we obtain a system of two equations: 

1911 = TeVl  q- a191192-- f19 ~ 

' b ~  19 2 ~- C19 2 - -  I) 

a = 7 2 F 2 (  - 1,  2) = y~(1 - 7 - 4 ( 2 -  e)) 

I f s>O,  

where 

(3.6) 

b z  1 2 ~7 F2(1, 1)= �89 4+2e) 
C = ~ )  - 6 + 4 ~  

f =  - �89 =1iv ~(1-7  4+2~)2 

(3.7) 

the system (3.7) has two solutions different from zero given by 

-2 (1 -c ) (7  ~ - 1 )  
191= a b - 7 7 g  -- ; i  

-b (7  ~ -  1) 
VZ=ab+ f(l_c) 

(3.8) 

Furthermore, it is possible to see that, if 5~- and 5 7 are, respectively, the 
positive and the negative solution, there is a neighborhood ~ of the origin 
in ~2, containing ~+ and 5- ,  such that ~ c~ {vl > 0} and ~ n {vl < 0} are 
in the domain of attraction, respectively, of ~5 + and ~-. 

In the following we shall consider only the solution with 51 > 0, but 
the same considerations could be applied to the other one. We want to 
prove that there is a fixed point of (2.12) which is approximately equal to 
the function 

O(go) = 251 [cos go -- 1 ] + 252 [cos(2go) - 1 ] (3.9) 

We want to apply the contraction mapping principle; hence we need to 



Hierarchical 2D Coulomb Gas 963 

define a suitable Banach space and find a T-invariant subset, containing 
(3.9), on which T is a contraction with respect to a suitable metric. 

Let us consider the functions of ~ ,  which are analytic and bounded 
in a symmetric strip along the real axis of width 2b such that 

6 - e J' -= ~1/2 ~ 12~'( 1 (3.10) 

These functions form a Banach space ~,  if we define the norm in the 
following way: 

I[vll = s u p  6 QIVQI (3.11) 
Q~>I 

Let ~3ac ~3 be the sphere of radius d with center at the origin. We want to 
choose d and 5 [-see (3.10)] so that the smaller sphere fSa/2 contains the 
function f [-see (3.9)]. From (3.8) it follows that this is possible if 

I 1--c  7 ' - -1] ' /2  
2 ab+---f-~-c) c <~dgs 

(3.12) 
2 b 7 ~ - 1  ~< da 2 

ab+ f(1 - c )  

The bounds (3.12) and (3.10) can be satisfied for any d if 5 is sufficiently 
large and e is sufficiently small, as we shall suppose in the following. 

We want now to define a subset ~ ~ ~d  containing the functions 
which are close to ~. Let us define 

vi=gi+ri, v;=  f ; +  t~, i = 1 , 2  (3.13) 

and consider the linear change of coordinates which diagonalizes the 
linearization of the system (3.6) around its fixed point, that is, 

( r l )  = S (ul)  r2 u2 (3.14) 

where 

with 

0 " - -  

K =  

1 - c - K ( y  ~-  1) 

4(1 - c )  
(3.16) 

(1 + 2f~5~- c){ 1 + [1 - 8 ( 1  - c ) (7  ~ -  1)/(1 +2fg~-c)2]  1/2 } 
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~3 is the set of functions v e ~3 d such that 

lu21 ~<~Te 3/2 (3.17) 

where 0 < r/< 1/2 and d is any fixed positive constant. 

" l 'hoorom 3.1. There exist a positive constant do and, for any given 
d, 7, and r/such that 0 < d~< do and 0 < r/< 1/2, another constant eo so that 
the set ~3 is invariant under the transformation T if e ~< %. 

ProoL (3.2) and (3.4) imply that, if v ~ ~ a  and Q ~> 1, 

n--2 QI+...+Qn=Q i = 1  

~Y2-Q2(2-e) d~)Q+ ~ (BldN ~-~)ng ~Q2/n E ~ 6~ 0'1 ( 3 . 1 8 )  

n = 2  O l +  " '  +On=O i = 1  
IQil > 1 

where B, B 1 are suitable positive constants and 61 is chosen so that 

(~'~ 61 < 1 (3.19) 

We now have to carefully bound the sum 

I=- L (Bldx/-~) "e-~Q2/" 2 [I 3~ Q'' (3.20) 
n = 2  Q I +  "'" +Qn=Q i = 1  

IQil/> 1 

We can write 

I =  Io + I1 (3.21) 

with 
Q 

lo=E 
n = 2  

I1 = 
h = 2  

where the combinatorial factor Nk(Q) is defined as 

{ ! Q - 1 )  luif~ 
Nk(Q) = ~" 1 = k -  1 

Q I +  "'" +Qk=Q t'~- 
Qi>~ I 

(B1 d,v/~)" e ~Q2/n 3 QN.( Q ) (3.22) 

(Bldx/-~)ne -~Q2/" ~ 6Q+2~N~(s) N._~(Q+s) (3.23) 
k = l  s=k 

Q>~k>~l 

l <~Q<k 
(3.24) 
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It is easy to see that 

Io <~ xQe-~O(B~d)2(1 + Bld.~/-~) Q 28Q (3.25) 

In order to bound I~, we use the inequality 

( S'~ S k e ps 
k) <~ ~. <~ ~-; (3.26) 

valid for any positive p and we choose p so that 

82 ~ 81 ep < 1 (3.27) 

Then we have 

-- e-~Q2/" - - 0 2  (3.28) 
o = 2  

If d is sufficiently small, we have also 

O l d N ~  (1 -[- 82) ~ ~,( 1 (3.29) 
P 

which is compatible with (3.10) and (3.12) for e small enough and ~ large 
enough. (3.22), (3.28), and (3.29) easily imply that 

I<<, 3(B~ d)28 Q (3.30) 

for a suitable positive constant A, only depending on 6 and 61. 
The inequalities (3.18) and (3.20) imply that, if Q>~3, Iv~l <~d8 Q 

provided that 

~ 2  - -  9 ( 2  - -  ~)d + A(B 1 d) z ~< d (3.31 ) 

which can be satisfied if d is sufficiently small. Then, in order to prove that 
is invariant, we still have to check that the condition (3.17) is preserved. 

Let us notice that 

where 

(r'l'] = ( 1 -  2f~l 2 a ~ l ~ ( r l ~  .q_ (~/1)-t- (/~1) 
\r'2,] \ -2b~1 c / \ r2 /  ~b2 ~2 

I/11 = ar I r; -- 3f/71 r21 -- f r~  

02 = -br~ 

(3.32) 

(3.33) 
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and 

2 ~  1 
n-~ 

2 ~c 1 
172 = 7 .~2-- n--~ 

E 
Q I +  ' "  +Qn =1 

I Q l r +  - - - + I Q . I ~ > 5  

E 
Q I +  ' "  + Q n  = 2  

I Q I I +  - - - +  IQnl ~ > 4  

v~,...VQF~(Q1 ..... Q,) 

VQI'"VQnFn(Q1 ..... Q . )  

(3.34) 

Proceeding as before, it is easy to show that, if d is sufficiently small, 
then 

I~11 ~ d~ 5 = d~5~ 5/2 

I/~21 ~d~  4 =da4~ 2 
(3.35) 

The previous considerations imply that there exists d o > 0 such that, 
given d<~do, (3.10), (3.12), (3.29), (3.31), and (3.35) are satisfied for e 
sufficiently small. 

By some simple algebra and using (3.14), it is possible to show that 

u'2/ k22u2/ + ~ 2  + 2bfe,~71) (3.36) 

where 

21= 1 - K ( y  ~ -  1) 

)~ = 7-6+4~ + K(7 ~ -  1 ) -  2/g  2 
(3.37) 

and 

arlr2- (3f + aba)vlr~- fr~ 
(R12)=5(_br~+2b~Oa(arlr2_3f~1r~_ fr~)/ (3.38) 

f f  

= 1_2ab~2~ ~ (3.39) 

By using (3.8), (3.14), (3.35), and (3.36), it is easy to prove that, if 
0 < r/< 1/2, and e is sufficiently small, say e ~< eo, then 

(3.40) 
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for suitable constants c~, i=1,. . . ,4.  Then the conditions (3.17) are 
preserved if 

d 
Jl, 1 -}- C 1 ~2e3/2 "{-'C 2 -~  Cl5g 3/2 rl ~ 1 

d asel/. 2 )~2-'~C3~12,F, 1/2+2q-~-C4 - <~1 
d 

(3.41) 

By looking at (3.37), it is immediate to see that (3.41) can be satisfied, 
given any 0 < t /< 1/2, if e is small enough. In order to prove that Tv e ~,  
we still have to check that 

Ivll <d~, Iv~l < d  (52 (3.42) 

which is again true for any ~/< 1/2, if e is small enough, by (3.13), (3.17), 
and the fact that ~efSa/2. | 

We now want to show that ~ contains a fixed point v* of the transfor- 
mation T and that, given any ve~3, IlTnv-v*l]--+0 as n ~  oo. 

Given two elements of ~,  v (1) and v (2), we define rlJ)=vl~}-Oi, 
j, i =  1, 2, and ul j~ as in (3.13) and (3.14); then we define 

and 

m(v (1), v (2)) = max{6 -1 lu] 1)-  u]2) l, c~ -2 lu(21)- u(=21l, sup a o i v { ~  v~)l} 
Q~>3 

It is easy to see that 

Iv] ~ -  v]2)l = Ir] ~)- r]2~[ <~ cs am(v (~, /)(2)) 

iv~,~_= r = It(21)- r~2~l < c, a2m(v ('~, v ~2~) 

(3.43) 

(3.44) 

b/(1)__ .(2) ~ C5 • i l u ( l ) _  D(2)] l 1 ~1 

lu ~1~- u ~2~ < c5 6 2 I1r a~-  v<2)ll 2 2 
(3.45) 

for some constant cs. 
The inequalities (3.44) and (3.45) imply that m and the norm (3.11) 

generate the same topology. Therefore, in order to prove the existence of 
a fixed point v* in ~ and its asymptotic stability, the following theorem is 
sufficient. 

T h e o r e m  3.2. There exist a positive constant dl~< do and, for any 
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given d~< d~ and 0 < y/< 1/2, another constant et ~< ~o such that, for any 
~<~1,  

]Tt(Tu(I), T/)(2)) ~ Veto(V(1), /)(2)) 

w i t h v ~ < l a n d v , ~ l  a s e ~ 0 .  

(3.46) 

ProoL By proceeding as in the proof of Theorem 3.1 and using the 
identity 

v ~ ' " @ _ , l - v ~ ' " v ~ , l :  ~ V~'''V(J~_~r"(1)--"(2)3V~)k+LvQ~ v Q k ,  I"''V~), (3.47) 
k=l  

and (3.44), it is easy to show that, if Q ~> 3 and d is sufficiently small, then 

O -Q I (T/)(1))Q _ (To(2))Q I ~< [-~12- 9(2- e) ..]_ B2d] m(v (~), v (2)) (3.48) 

for some constant B2, depending only on 6 and 61. 
Moreover, by using (3.36), it is easy to show that 

0--1 I/2[ (1) -  U'l(2)I ~ [/~1 -~- C6/33/2 "~ C6/32] m(v(1),/)(2)) 
(3.49) 

b 2 Ib/~(1)/g~(2)l ~ ['~2 -]- C6/31/2+r/ ~- C6/~'] m(v(1), /)(2)) 

for d small enough, say d ~< d I ~< do, and some constant c 6 depending on d, 
~, and dl. 

All the claims of the theorem easily follow. | 

Theorem 3.2 is not completely satisfactory, since we are interested 
in the properties of the measure (3.5) with potential/)(r = 2(cos q9- 1)= 
v()4(~o). The properties of the approximate transformation (3.6) [see discus- 
sion after (3.8) suggest that /)(~) is in the domain of attraction of v* for 2 
positive and sufficiently small, and that a similar result holds for 2 < 0; 
moreover, the computer simulation is in complete agreement with this con- 
jecture. In order to prove this claim rigorously, however, we should 
investigate more accurately the properties of Eq. (3.36), trying to show that 
T"v ~;') ~ ~ for any 2 sufficiently small, if n is large enough. We think that 
this is possible, but we did not try to fill in the details. 

4. THE CORRELATION FUNCTIONS 

Let us suppose that e, r/, and d are chosen so that there is in ~ a fixed 
point v* of the transformation T. We want to study the linear operator Lv 
[see (2.13)] for v=v*;  let us simply call it L. 
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We shall consider the action of L on the Hilbert space S3 of the 
functions periodic of period T~ = 2=/c( with inner product 

1 T~ 
( G , F ) = - ~  fo d,;o q(,;o) G*(,:p) F((o) (4.1) 

where 

q(,.p) = e~(~ o) Po(dz) e~(~~ eO(~~ (4.2) 

Proposition 4.1. L is a trace class, positive, self-adjoint operator 
of norm 1. 

Proof. It is very easy to verify that L is self-adjoint, by using the fact 
that the measure Po(dz) is even in z. 

Let us now observe that the functions 

~(2((o) = q(~o) 1/2 e~(2e, Q e 2  

are a base of ~ and that we can write 

(4.3) 

e~(,p)q(qo)-,/2=~ goei~(2~o, ~ [g(212 < ~ (4.4) 
(2 Q 

Then we have 

Tr(L)  = ~ (OQ, L~/(2) 
Q 

= 2  f Po(dZ)-~ de [e~(~~176176 
Q 

= ~, rg(2' 012 f Po(dz) e i~O'z= Y', [go' ol27 (~2/4~)(2,2 
Q,Q' Q,Q' 

/ \ Q '  / 

which proves that L is trace class. 
If F~  SS, then e~Fe ~2 and therefore we can write 

ev( ' F( q, ) = E T(2e 217(2) 2 < oo 
O (2 

Then, by proceeding as before, we can check that 

(4.5) 

(4.6) 

(F, LF)= Z I~Q]27 -(~2/4~)e2 
Q 

(4.7) 
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which proves that L is a positive operator. Moreover, 

(F, L F ) =  I(f, LF)] 

<. f Po(d ) l--- f do e~(W)+~(~~ 2 + IF(q~ + z)[ 2] 
2T, J0 

_ l f  r~ 2 
- T~ Jo de e~(~') IF(q~)l N~(~o) = ( f ,  F)  (4.8) 

Since L F =  F, if F is a constant function, HLII = 1. | 

By Proposition 4.1, L is a positive compact operator; then it has a 
pure discrete point spectrum with positive eigenvalues, at most finitely 
degenerate. Furthermore, the subspaces S3 § and S3- of .~, which contain 
the functions even and odd in ~0, respectively, are invariant under the 
action of L. Let L + be the restriction of L to S3-+. 

Since the constants are eigenfunctions of L and L +, for any e~<el 
there is a simple eigenvalue of L § 

2~- = 1 (4.9) 

For e = 0  (and hence v = 0 )  the other eigenvalues of L + and L -  are 
the same, that is, 

2 + (0) = 7 _2,2, n = 1,... (4.10) 

and they are all simple. By using the properties of v proven in Section 3 
and known results about the perturbation theory of compact operators, it 
is possible to show that the eigenvalues of L -+ can be written as suitable 
functions 2,,+(~), which are continuous in ~=0.  Hence all the eigenvalues 
different from 3.~ are strictly less than 1. 

Let {P,},~>0 be the set of all eigenvalues, ordered so that/~,+1 ~<#,, 
and let G~ be the corresponding eigenfunctions, normalized so that Gn is 
real and 

(Gn, Gm) = 6rim (4.11) 

In particular, Po = 1 and 

V 1 ~r~ ~--1/2 
G0=L-~-~Jo d~oq(~o)J (4.12) 

Moreover, it is possible to show, by the technique used below in the proof 
of Theorem 4.1, that the Gn are smooth functions. 
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Gn, 
Let us consider a function F e  .~ such that its expansion in terms of the 

F(~p)= ~ f,,Gn(p) (4.13) 
n = 0  

has good convergence properties. Then, by (2.11) we have 

(F(qoo) >~ = ((LkF)(~Oo) >~ 

= Y',f~#k(Gn(q)o))~ k ~  loGo = (Go, F)Go 
n 

(4.14) 

Let us now suppose that we want to calculate the correlation between 
F(q~0) and F*(q~x). This problem arises, for example, if we are interested in 
the two-charge correlation; in this case F(q~)=e i~~ whose expansion has 
the needed convergence properties, as is possible to show with some 
standard calculation, using the smoothness of the functions Gn and the fact 
that they are small perturbations of the functions e i~Q. 

If h is the smallest integer so that there exists a A s Qh containing both 
0 and x, we can write 

(F(rpo) F*(q)x) )~ = (I (Lhf)(~Oo)[ 2 )~ 

~'-'~ E h h fnfmktn~m(Gn(q~o) Gm(q)o))v (4.15) 
nm 

But, by (4.11) and (4.14) 

< Gn(~Po) Gm(q~o) )v = (Go, G. Gm)Go = G~(Gn, Gin)= G2 •nm 

Then 

(4.16) 

(F(q)o) F*(q~x) ) r =  (F(q~o) F*(~gx))v- ] (F(q)o))~12 

=G~ ~ #]h ifnl2 
n = l  

and, as a consequence, 

<F(q~o) F*(~ox) > T ~ c#~1 h = cdoU t) x ~-oo 

(4.17) 

(4.18) 

with c a suitable constant and 

r = - 2  log s #1 (4.19) 

822/'67/'5-6-9 
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We now want  to show that  

/a~ = 7 -2  (4.20) 

at least for e small enough. We start  by observing that, since Tv = v, by 
(2.12), 

e(1/~2)~(r ~ Po(dz) e ~(~ + z) (4.21) 
Po(dz) e ~(z) 

By calculating the (p-derivative of bo th  sides, it is easy to check that  

dv ?, 2 dv (4.22) 

Since dv/dcp E ~ , this implies that  

2~-(e) = 7 -2 , Ve~<e~ (4.23) 

But ~tt, for e small enough,  is the m i n i m u m  between 2~(e )  and Z~-(~); 
hence, in order  to show (4.20) it is sufficient to prove  that  Z~(e)  is smaller 
than  7 2. 

We notice that  (2.13) can be writ ten also in the following way: 

d 2 (LvF)(q~ l~ f P~ z)+ 2F(q)+ z)] =o (4.24) 

If F ~  SS, F ~  ~v 2, then we can write 

F((p) = Z fQe '~Q~~ (4.25) 
Q 

Moreover ,  since (L~F)((p) does not  change if we add a constant  to v(q)), 
we can replace in (4.24) v(~o) by the expansion ZQeovee  i~~ whose 
coefficients are the same as in (3.1). Then  we obta in  

(L~F)(q~) = ~ f07 - (~2/4Tc)Q2 ei=Oe 
O 

+ (.-1)! Z 
n = 2 Q t , . . . ,  Q n  

vQ~ ...VQ._JQF,(Q1 ..... Q,) 

x exp [ i~ Q~= l Qi) q~ ] (4.26) 
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If 2 < 1, the eigenvalue equation L~F=  ZF is satisfied if fo = 0 and 

2fo = fQ7  -~2/4"~Q2 

1 
+ , ,~2 (n -1 ) !Q~+  . . . . .  ~e~  o ve~'''v~176 (4.27) 

for IQ[ #0 .  
We are interested in the dependence on e of the eigenvalue 2~(e) 

and of the Fourier coefficients fo(e)=f_o(e) of the corresponding eigen- 
function, which we shall normalize so that 

f~(a) = f _ ~ ( e ) =  1 (4.28) 

For e = 0, we have 

fl(O)~-J~ 1(0), fQ = 0  if [Qr r i (4.29) 

We shall now rewrite (4.27), for 2 = Z + ( e )  as a fixed-point equation in a 
suitable Banach space, where the existence of a unique solution will follow 
from the contraction mapping principle. 

Let us define 

L 1 
GQ(F) = (n -1) [  

n = 2  

• 

IQ'I ~>2 

2 VQI''" VQn_IFn(QI ,..., Q, , -  i, Q') 
Q I +  "'" +Qn-I~Q-Q ' 

(4.30) 

Equation (4.27) gives, for Q = 1, 

21~(e) = ~ 2+r(e)+G~(F) 

where 

(4.31) 

r ( e )=7-2 (7  ~ - l ) + v 2 F z ( 2 , - 1 ) + n ~  ( n - l ) !  
= 3  

x Z Z VQ~...VQ._~F,(Q1 ..... Q, - I ,  Q) 
Q = •  QI+...+Qn I = I - Q  

(4.32) 

If I Q [ ~ 2 ,  we have 

[2~- (e) - 7 <~2/4")Q2] fQ = hQ + Go(F ) (4.33) 
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where 

he = (n - 1)! Z Z 
n = 2  IQ'I  = 1  Q I +  "'" + Q n - I = Q - Q  ' 

Ve~... VQ,_~Fn(Q1,..., Q~-l ,  Q') 

(4.34) 

By proceedings as in proof of Theorem 3.1, it is easy to show that 
there exist constants al and A1, only depending on ~ and ~1, such that 

[r(~)l <<.a,e (4.35) 

Ihol ~ A I  d6 ~ot 1 if IQI >~2 (4.36) 

Let us now consider the Banach space ~ of the even functions F(q0), 
periodic of period T~, such that fo = 0, f l  = f -  ~ = 1, and 

IIFll-= sup ~ o+1 Ifol < oo (4.37) 
Q > ~ 2  

We denote by ~D the sphere of radius D and center at the origin and we 
consider the operator K from ~D to .~+, defined so that, if (KF)(~o)= 
Y, Qeo f~ eider~ then 

f Q = f ' - o -  he+G~ if Q~>2 
? -2 + r(e) + GI(F) - ? - -  ( ~ 2 / 2 r c ) Q 2  

(4.38) 

f~ = f ' l =  1, f 6 = 0  

By (4.31) and (4.33), F is a solution of (4.27) for 2 = 2~(~), belonging to 
~D, if and only if F is a fixed point of the operator K. 

T h e o r e m  4.1. There exist a positive constant d 2 ~< dl and, for any 
given d~< d2 and 0 < q < 1/2, other constants e2, Do, and D1 such that ~D 
is invariant under the transformation K if e~<e2 and Do<~D<~D~; 
moreover, K is a contraction as an operator from ~D to ~D- 

ProoL By proceeding as in the proof of Theorem 3.1, it is possible to 
show that, if Q ~> 2 and Dd is small enough, 

Ald(I  + D)6 Q-1 

IfQl<~T -2 ale DdA1 - - 6 - ~ ~2/~ (4.39) 

Therefore ~D is invariant under the transformation K if 

Aid(1 + D) 
D ~> (4.40) 

7 _ 2 _ a l ~ _ D d A l ~ _  7 ~2/~ 
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and it is easy to see that there exist d2, ~2, DO, and D 1 such that (4.40) is 
satisfied if d ~ d 2 ,  e<<.e2, and Do <~D<<.DI. 

Let us now consider two elements F1, F2 ~ ~D such that, for Q ~> 2, 

[f lo--  f2Q[ <~P (SQ 1 (4.41) 

It is easy to check that, for any Q ~> 1, 

I G Q( F1 ) _ G Q( F2) I ~ [ d h  l (5 o - 1  (4.42) 

Moreover, if Q/> 2, by (4.38), 

f~o - f ; o  = {hoEGI(F2)-  G,(FI)]  + b o E G o ( & ) -  Go(F2)] 

+ GQ(FI)[GI(F2) - G~(Fx)] + GI(F~)[GQ(F1) - Go(F2)] } 

x { [bo+GI(F1) ] [bo+G, (F2) ]  } 1 (4.43) 

where 

b O = r(e) + y - 2  _ ~ (~2/47t) Q2 (4.44) 

Then it is very easy to show that, for d small enough, 

If~o - f ~ o l  ~< ~P, c~ < 1 (4.45) 

which immediately implies, together with Theorem 3.1, all the claims of this 
theorem. | 

From (4.30), (4.31), (4.32), Theorem 4.1, and some simple algebra, it 
follows that 

( ab ) 2~-(~)=? 2 - e l o g 7  l + a b + f ( l _ c  ) +O(e  3/2) (4.46) 

Then, if e is small enough, 

21(g) < 21(e) (4.47) 

so that (4.20) is satisfied. 
This means that, if v =  v*, the integer charge truncated correlations 

decay as d~  4. With some more computational effort one could show that 
this "result is true also if v is in the domain of attraction of v*. 

We conclude by two remarks. The first remark, anticipated in the 
discussion preceding (4.13), is that the technique used in this section can be 
applied to any eigenvalue of L v with similar results. In particular, one can 
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show that, for any given n and e small enough (how small depends on n), 

The second remark is that we could study the fractional charge 
correlations by using similar arguments, in spite of the fact that the 
function e ~ must be substituted by e ~ ,  0 < ~ < 1, which is not periodic 
of period T~. It is only sufficient to observe that, if F(~0)= e~r176 with 
FE 9, then 

(L~F)(~o) = ei~r162 (4.48) 

(L~r = ~ Po( dz) ei~r176 eV(~~ + Z) F( q) + z) 

Po(dz) e ~(~ + ~) 
(4.49) 

and L~ r is again a self-adjoint operator from 9 to 9, whose spectrum can 
be studied in the same way as the spectrum of L v, yielding the same results 
reported in ref. 6. 

A P P E N D I X .  P R O O F  OF T H E  B O U N D  (3 .4 )  

Let I =  { 1,..., n} be the set of the first n positive integers and, for each 
i e I ,  let Qi be a fixed integer (Qie Z). If zt is a random Gaussian variable 
with mean 0 and covariance 

g(z~)= t ~< 1 (AI) 

and c is a fixed positive constant, we define 

F(I, t) = ~ r(ei'/Telz';...; e i ' /7e:') (A2) 

where g r  denotes the truncated expectation with respect to z,. It is a 
well-known fact that 

with 

F(I, t ) = e x p  - ~  Q~t f ( I ,  t) 
i = 1  

(A3) 

f(I, t ) = ~  l~ ( e-cQ'Qjt- 1) (A4) 
G ~ e G  

where G is the family of all connected graphs on n vertices labeled by the 
elements of I, with bonds denoted by 0" (i, j e I). 

Using the results of ref. 9, in particular Lemma 3.3 and the recurrence 
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relation for f ( I ,  t) which follows from it (see ref. 9, p. 40) it is very easy to 
show that 

- - ds e-(c/2)Ql(t s) 
2 0 ~ - J ~ I  

F(I, t) = ] if 111 = n ~> 2 (a5)  

[e  -(C/2)~ if Ill = 1 

where we used the definition, for J a subset o f / ,  

Q J =  ~ Qi (A6) 
i e J  

We want now to describe the solution of the recurrence relation (AS). 
Let us consider, for n ~> 2, the family Fn of all planar binary trees with root 
r and n endpoints labeled by the elements of I, oriented from the root to 
the endpoints (see Fig. 1). 

We call vertices the root, the endpoints (e.p. in the following), and the 
branch points of the tree; the branch points also will be called nontrivial 
(n.t. in the following) vertices. If v is a vertex different from r, we shall 
denote by v' the vertex immediately preceding it in the tree and we shall 
say that i ~ v if the e.p. with label i follows v; moreover, Vo will denote the 
vertex immediately following the root. We define 

Q~ = ~ Qi (A7) 
i 6 v  

Finally, we label each vertex v with a real number s~ such that 

t>~s~,>>,s~O 

Sr = t (A8) 

s~ = 0 if v is an e.p. 

"0 

V t 

VO 

Fig.  1 
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It is easy to see that, if 111 ~> 2, 

F(I, t )=  E ( I - I  -dG)  o~r, \~n.,. 2 j)~oWo 

where Zo is the characteristic funcUon of the set (A9) and 

W o= x/cQi) exp - ~ Q~sv, 
i= 1 ve.p. 

x { ~I~.t. (xf-~Qv)expl-2Q~(s~'-G)]} 
v # v o  

1 

(A9) 

(AlO) 

We want to show that 

IF(I, t)l ~<n "-1 (2x/~ IQel)exp - -2s.Q}t (Al l )  
i = 1  

The first step in the proof is to get rid of the "bad" factors Qv in (A10), 
using the bound 

1 c 
<~ (s ,_s~)l/z exp [ -  ~ Q2(G,- sv) ; (A12) 

Then, if III ~ 2, we can write, using also that 0 ~< t - sv0 ~< 1, 

IF(I, t)l ~ I~I ( . ~  IQ~I)E(1, t) (A13) 
i = 1  

where 

(1~ t dS e-(C/4)Q~(, s) 
~2 Jo (t--s) 1/2 

E(I , t )=]  if III =n~>2 

{e -(C/2)Q~' if Ill = 1 

E(J, s) E(I\J, s) 
~ , ~ J ~ I  

We now prove, by induction on n = 111, that 

(A14) 

E(I, t) <<. (2n)'-le-(C/4n)Q2t (A15) 
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In fact, (A15)  is true for n = 1; moreover ,  if we suppose  that it is true for 
1 ~< k < n, we have,  using (A14),  

E(I,t)~<2 ~-3  ~ kk-~(n-k)  n-k-aG(LJ, t )  (A16) 
Z ~ J ~ I  

where k = IJI and 

i c (  2 2  G(l,J,t)=exp --~Q~t ( t _ s ~ e X p  -~s Q2_QJ Q, \J~  (A17) 
k n- lcJ l  

If [ Q ~ -  2 2 Oj/k - k)]  t>9, - Q ,\j(n then 

c (Q:+ Q~,)]  ds ~<2exp - G(I,J,t)<~exp - - a t \ T  ~ _ k j j  (,_,),/2 -'4-~ntO, 

(A18) 

where we used the fact that t ~< 1 and the inequality, valid for two arbitrary 
real numbers a and b, 

a 2 b 2 1 
k- + ~ >~ -n (a + b) 2 (A19) 

If 2 2 2 [QI - Qe/k-  Q&j/(n - k)]  4 O, then 

G(L 3", t )~e (c/4),e~ (t_s)l/2 ~2e -(c/4")te~ (A20) 

(A16), (A18), and (A20) imply that 

k = l  

~< (2n)" - I e (c/4n)O~t (A21) 

where we used the identity (see ref. 9, Lemma 4.2) 

k = l  

Then (A15) is proved; if we insert it into (A13), we obtain the bound 
(All) .  
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